Quasi-static Evolution in Nonassociative Plasticity: The Cap Model
نویسندگان
چکیده
Non-associative elasto-plasticity is the working model of plasticity for soil and rock mechanics. Yet, it is usually viewed as non-variational. In this work, we prove a contrario the existence of a variational evolution for such a model under a natural capping assumption on the hydrostatic stresses and a less natural mollification of the stress admissibility constraint. The obtained elasto-plastic evolution is expressed for times that are conveniently rescaled.
منابع مشابه
Approximation of Dynamic and Quasi-static Evolution Problems in Elasto-plasticity by Cap Models
This work is devoted to the analysis of elasto-plasticity models arising in soil mechanics. Contrary to the typical models mainly used for metals, it is required here to take into account plastic dilatancy due to the sensitivity of granular materials to hydrostatic pressure. The yield criterion thus depends on the mean stress and the elasticity domain is unbounded and not invariant in the direc...
متن کاملFEM Implementation of the Coupled Elastoplastic/Damage Model: Failure Prediction of Fiber Reinforced Polymers (FRPs) Composites
The coupled damage/plasticity model for meso-level which is ply-level in case of Uni-Directional (UD) Fiber Reinforced Polymers (FRPs) is implemented. The mathematical formulations, particularly the plasticity part, are discussed in a comprehensive manner. The plastic potential is defined in effective stress space and the damage evolution is based on the theory of irreversible thermodynamics. T...
متن کاملQuasi-static Evolution for a Model in Strain Gradient Plasticity
We prove the existence of a quasistatic evolution for a model in strain gradient plasticity proposed by Gurtin and Anand concerning isotropic, plastically irrotational materials under small deformations. This is done by means of the energetic approach to rate-independent evolution problems. Finally we study the asymptotic behavior of the evolution as the strain gradient length scales tend to ze...
متن کاملOrthogonal projections onto convex sets and the application to problems in plasticity
We review the classical theory of static and quasi-static plasticity in an abstract framework of convex analysis. It can be shown that the extended use of orthogonal projections onto closed convex sets simplifies the analysis substantially. We present new characterizations of the primal problem in plasticity. The abstract setting is applied to problems in perfect plasticity and to plasticity wi...
متن کاملA Critical Revisiting of Finite Elasto-Plasticity
We propose a new evolution model for large strain elastoplasticity. In a quasi-static setting the suggested model can be formulated as a variational evolution. We establish existence of a closely related evolution in a regularized context. We then discuss how the proposed model performs in both a rigid-plastic, and a one-dimensional settings and compare the results with those that could be achi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Math. Analysis
دوره 44 شماره
صفحات -
تاریخ انتشار 2012